Join our newsletter community

Stay informed about the latest advancements, emerging trends, and future possibilities in emerging technology like AI, ML.

How to Enhance Content Workflows with the Power of NLP?

Sep, 21 2023 | Publishing Automation
Sureshkumar Parandhaman

AVP – Publishing Solutions

  • Share this Blog :

Natural Language Processing (NLP) empowers publishers to reduce manual touchpoints and expedite content flow through the publishing pipeline. This accelerates time to market and therefore knowledge dissemination. NLP technologies, such as automated summarization, disambiguation, part-of-speech tagging, context extraction, and linguistic understanding and recognition, have led to the development of large language models (LLMs) that facilitate AI-based language analysis and generation.


Image Source:


Scholarly authors and publishers are leveraging AI tools for diverse purposes, including the improvement of efficiency, accuracy, and quality of research and content. This article provides a stepwise guide to integrate NLP into existing publishing workflows.


The Pre-Integration Checklist

Before integrating any technology, the existing process should be audited to identify current performance and quality bottlenecks and determine areas of improvement. Next, list out the potential touchpoints where NLP enhancement can expedite or refine the process. You can also seek help from experienced technology providers, like Integra, to gauge the capabilities of NLP and determine how you can make the most of the technology to improve workflows.


Using the touchpoints for NLP integration, define and set clear goals. Establish qualitative and quantitative KPIs for the NLP augmentation. Using these goals, define the software and integration requirements, along with necessary training and skill-building requirements, to effectively leverage the innovative tools.


Steps to Integrating NLP

Integration is rarely a straight-forward process. Enhancing the existing technology stack for API-based tools requires putting together and executing an implementation plan.


Step 1. Data Collection and Preparation

Language models train using existing data, learning its patterns and anomalies. To prepare for NLP integration, start by identifying and collating data from all available sources. Next, clean, structure, and migrate the data to the cloud, where ML models can be trained.


Step 2. Choose the Right NLP Tools

You can choose off-the-shelf NLP solutions or get them customized to your specific requirements. While off-the-shelf options might be cost-effective and offer immediate usability, tools with dedicated purposes will need to be integrated to obtain the overall process improvements. On the other hand, customized tools may take a little more time and investment, but will address specific business requirements and pain points, transforming workflows sustainably for the long term.


Step 3. Implementation in Workflows

With the help of technical teams, perform API integrations, with the content management system (CMS), process monitoring system, work allocation subsystems, etc., to reap comprehensive benefits of NLP enhancement.


Leverage NLP automation for first-level language quality assessment, sentiment analysis, content tagging, keyword extraction, summarization, and much more. This can help in classifying manuscript submissions based on quality, accuracy, and the required level of manual editing to expedite movement.


Step 4. Training and Optimization

Integrate the NLP model training within processes to align its capabilities with your content and facilitate continuous refinement for improved accuracy.


Step 5. Monitoring and Maintenance

Consistently check the relevance and accuracy of model and technology updates to ensure long-term value extraction. Also, monitor the workflows to track the performance, speed, and quality of NLP tools using metrics such as processing time saved, man-hours saved, language accuracy improved, etc., to assess the performance of these tools.


Using the KPIs established, performance data of NLP tools, and business outcomes measure the impact of NLP integration. Use quantifiable benefits such as time saved, content reach improved, and engagement enhanced to measure ROI.


AI Revolutionizing Publishing

While NLP directly works to expedite and enhance manuscript processing, AI integration across business functions aids in managing timelines, mapping reviewers to content according to subject matter, and even marketing. To stay relevant and ahead of the competition, publishers must stay updated with innovations in NLP and other cutting-edge technologies. Partnering with a technology provider with profound AI and NLP integration experience, such as Integra, eliminates the need, time, and costs required to build and maintain in-house technology teams. Schedule a call with the experts to make an informed NLP integration decision.

Get notified
of our latest Blogs

    Nov 28, 2023 | Corporate eLearning

    Beyond Bias: Nurturing a Learning Culture with DEI Sensitivity

    Leaders today acknowledge the importance of incorporating diversity, equity, and inclusion (DEI) in workplace training. Prioritizing DEI in Learning & Development (L&D) programs enhances employee engagement and fosters a learning culture...more

    Nov 27, 2023 | Content Development

    Shaping the Future of Learning: The Human-AI Synergy in Education

    Education is evolving rapidly towards a skills-first approach, largely driven by AI advancements. The AI in education market is projected to hit $47.7 billion by 2030, indicating a major shift towards AI-enhanced learning, with Gen AI playing a crucial role across various educational levels...more

    Nov 24, 2023 | Publishing Automation

    How to Enhance Your Research Paper with a Comprehensive English Language Check?

    Enhance your research paper's language quality with NLP tools: Learn to prepare, review, and refine your manuscript for clarity and impact, boosting publication chances...more

    Nov 24, 2023 | Artificial intelligence

    7 Key Factors in Choosing the Right Custom AI Solution

    Explore 7 advanced factors for choosing custom AI solutions: model transparency, customization depth, data quality, vendor evaluation, ethical AI, and integration strategies...more

    Nov 23, 2023 | Technology Services

    Enhancing Educational Strategies: The Role of Data Analytics in Elevating Student Learning Outcomes

    Explore how data analytics revolutionizes education, enhancing personalized learning and global connectivity. Connect with our experts to transform your educational strategies...more

    Nov 23, 2023 | LMS

    Effective Strategies for LMS Implementation: Essential Do’s and Don’ts

    Explore key strategies for successful LMS implementation, focusing on essential do's & don'ts, customization, integration, user experience, and future scalability...more

    Ready to get
    Started with

    Sign up for our
    AI Newsletter